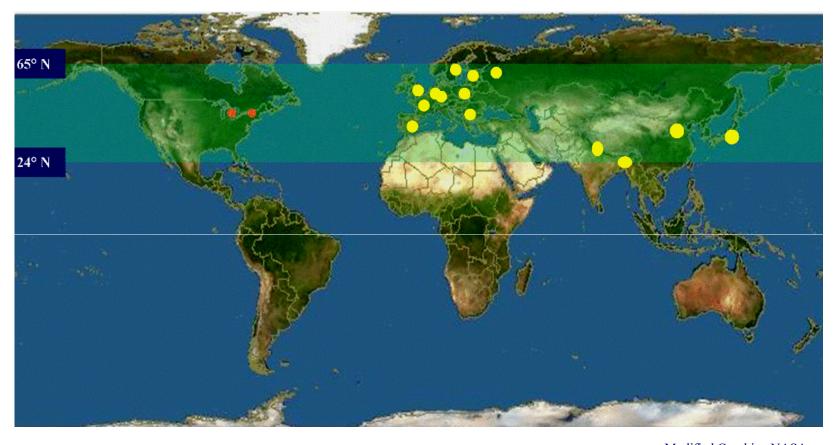
Starry Stonewort: Is Your Lake Capable of Hosting the "Connoisseur of Clean Waters"

Presentation and Photos by

Scott Brown Michigan Lake & Stream Associations Executive Director

Introduction

- Scientific Name: *Nitellopsis obtusa*
- common name: Starry Stonewort
- submerged aquatic macrophyte (Characeae)
- native to Europe
- bio-indicator of healthy aquatic ecosystems
- species first detected as an invasive:
 - North America's St. Lawrence Seaway in 1978
 - Laurentian Great Lakes in 1983
 - \circ inland lakes of Michigan in 2006


Reference: Schloesser et al. (1986)

Starry Stonewort

Illustration: R. K. Brown

Extant Geographic Distribution

Modified Graphic: NASA

Reference: Soulie-Marsche et al. (2002)

Basic Morphology

- highly evolved multi-cellular organism
- small apex coronula
- two to five inferior nodes and internodes
- whorl that consists of five or six thin upwardly radiating branchlets
- length ranges from 24 cm 2.0 meters

Reference: Bharathan (1983)

Starry Stonewort: The Subject of Numerous Cytological Studies



Photo: W. S. Brown

- inter-node cells 0.4 to 1 mm in diameter and up to 30 cm in length
- ideal in size for manipulation and observation
- considered to be discrete living organisms
- perpetuates cytoplasmic streaming following separation from thallus

Reference: Johnson et al. (2002)

Reproductive Capabilities of Starry Stonewort

- capable of sexual and asexual reproduction
- sexual reproduction occurs through production and fertilization of oospores
- North American colonies all male plants
- asexual reproduction occurs by prolific production of vegetative bulbils
- bulbils capable of surviving for long periods

References: Soulie-Marsche et al. (2002); Bharathan (1983)

Influence of Starry Stonewort on Inland Lake Trophic State Conditions

Charophyte meadows:

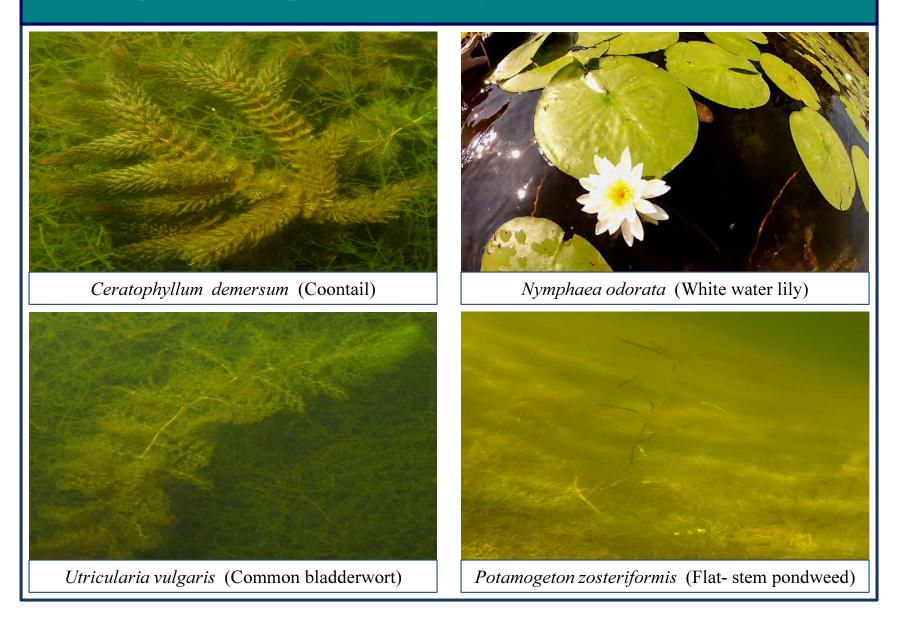
- increase water clarity by minimizing re-suspension of particulate matter
- release allelopathic substances
- provide complex habitat for zooplankton
- utilizes and precipitates calcium carbonate causing immobilization of phosphorus, inhibiting primary production

Above, *Nitellopsis obtusa* precipitating calcium carbonate

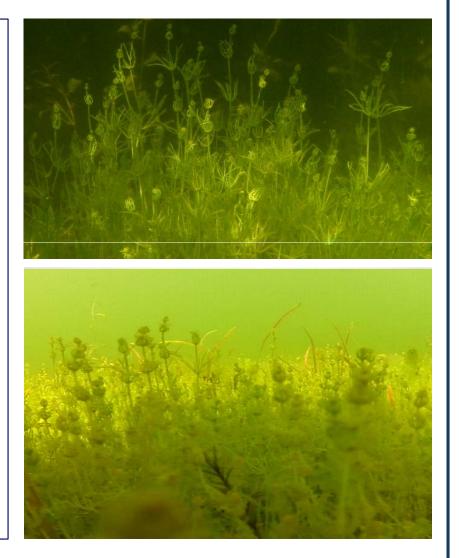
Reference: Kufel and Kufel, 2002

Impact of Dense Starry Stonewort Meadows on Inland Lake Littoral Habitat

Invasive macrophyte meadows:


- form dense benthic barriers
- alter or eliminate native submerged aquatic plants
- prevent access to fish spawning substrate
- eliminate optimal growth habitat for fish fry

Impact of Dense Monotypic Starry Stonewort Meadows on Inland Lake Littoral Habitat



Aquatic Plants Capable of Co-Existing with Starry Stonewort Meadows

Co-occurrence of *Chara vulgaris*

- Chara vulgaris
- Co-Occurs in all Michigan Starry Stonewort colonized lakes
- Native to Michigan inland lakes
- Requires high calcium carbonate levels
- Length positively correlated with high calcium carbonate levels
- Depth: 2 ft. 8 ft
- Requires good water clarity
- Intermingles with Starry Stonewort in shallow water

Co-occurrence of Eurasian Water Milfoil

- Myriophyllum spicatum
- Native to Europe and Asia
- Co-occurs with Starry Stonewort in European Inland Lakes
- Co-occurred in 88% (106/120) of 2012 Starry Stonewort Reported Inland Lakes in Michigan
- Trophic State Index preference equal (CTSI = 35 - 56)
- Starry Stonewort and Eurasian Water Milfoil compete for littoral dominance

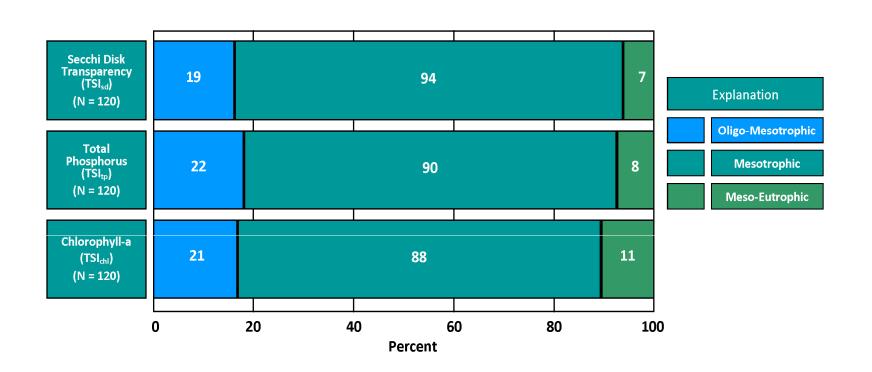
Preferred Trophic State of Starry Stonewort

- earlier studies suggested limitation to "cold, clear, calcium carbonate rich waters of low trophic status" (i.e., oligotrophic conditions)
- limited knowledge of trophic state preferences of the species derived in an ancillary manner from study of more frequently observed and sometimes co-occurring charophytes such as Chara tomentosa and Chara globularis
- recent studies emphasize role of submerged macrophytes, particularly charophyte meadows, in promoting water transparency and stabilizing trophic conditions

Reference: Krause (1985)

Pre-Starry Stonewort Invasion Trophic State of Michigan Lakes

Carlson Trophic State Index parameter values for 2012 reported inland lakes:


Carlson Trophic Index Parameters	Secchi Disk Transparency (Meters)	Total Phosphorus (µg/l)	Chlorophyll-a (µg/l)
Minimum	1.36	8.0	1.5
Maximum	5.49	33	13
Mean	3.08	17	4.75
Mode	3.35	15	3.6
Median	3.35	15	3.6

Trophic State Requirements of Starry Stonewort

Inland lakes in Michigan that were vulnerable to colonization by invasive *Nitellopsis obtusa* were largely oligo-mesotrophic to mesotrophic, with the likelihood of successful introduction rapidly declining with trophic state conditions significantly above or below these values providing a barrier to colonization.

Carlson Trophic State Index Classification		Oligotrophic			Oligo- Mesotrophic Mesotr		so- phic Eutr	ophic	Hypereutrophic		
	0	10	20	30	40	50	60	70	80	90	10
Secchi Disk Transparency (TSI _{sd}) (N = 120)					H						
	0	10	20	30	40	50	60	70	80	90	10
Total Phosphorus (TSI _{tp}) (N = 120)							ł				
	0	10	20	30	40	50	60	70	80	90	10
Chlorophyll-a (TSI _{chi}) (N = 120)					H]	+				

Carlson Trophic State Index Values for Starry Stonewort Invaded Inland Lakes

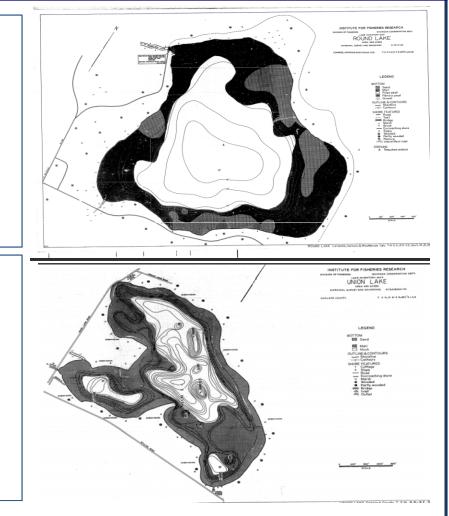
Carlson Trophic State Index values for Secchi disk transparency, total phosphorus and chlorophyll-a classified as either oligo-mesotrophic or mesotrophic comprised 94%, 93% and 91% of the group of Michigan inland lakes invaded by Starry stonewort.

Inland Lake Bathymetry v. Secchi Disk Transparency: Important Determinants of Starry Stonewort Colonization Patterns

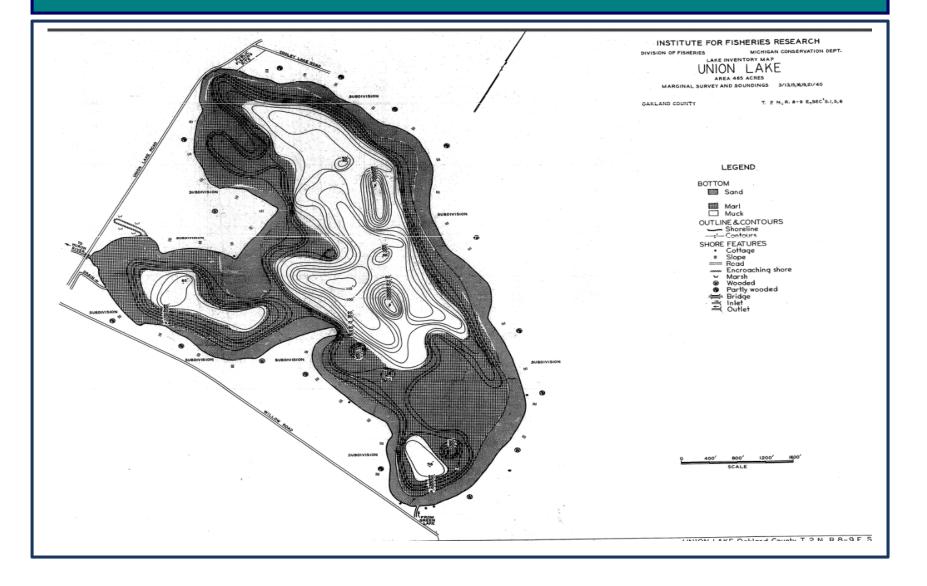
Round Lake (Jackson, Lenawee, Washtenaw)

Maximum Depth: 52 Ft.

Secchi Disk Transparency: 11 Ft.


Max. Depth Starry Stonewort: 16 Ft.

Union Lake (Oakland County)


Maximum Depth: 110 Ft.

Secchi Disk Transparency: 19 Ft.

Max. Depth of Starry Stonewort: 29 Ft.

Inland Lake Bathymetry: An Important Determinant of Starry Stonewort Colonization Patterns

Colonization Potential of Starry Stonewort in Michigan

Oligo-mesotrophic and mesotrophic conditions

required for the successful introduction of

invasive Nitellopsis obtusa are found in

approximately 75% of the 6,537 inland lakes in

Michigan of ≥ 4 ha in size.

Graphic: MiCorps

Other Important Factors Determining Distribution and Abundance of *Nitellopsis obtusa*

- calcium carbonate levels that often exceed 100 mg/l, equal to levels found in Scandinavia and Russia
- lake shapes, shoreline ratios, bottom contours, and shallow bays capable of supporting large submerged macrophytes communities

Photo: W. S. Brown

Reference: Fuller and Taricska (2011)

Future Study Opportunities

- impact of dense *Nitellopsis obtusa* meadows on submerged macrophyte community structure and diversity.
- influence of dense meadows on macro-invertebrate diversity.
- potential role of allelopathic chemicals in inhibiting primary production
- impact of dense meadows on fish spawning and recruitment
- influence of dense meadows on trophic state conditions
- affect of global warming on reproduction and growth patterns

Enhanced ecology-based inter-disciplinary

knowledge of charophytes and their

respective host aquatic ecosystems may

significantly improve efforts to conserve and

restore earth's increasingly vulnerable

freshwater ecosystems.

Illustration by Sebastian Trapp

Reference: Coops (2002)

References

Bharathan, S. (1983). Developmental morphology of *Nitellopsis obtusa* (Desv.) Groves. Proceedings of the Indian Academy of Science (Plant Science), Vol. 92, Number 5, 373-379.

Carlson, R. E. (1977). A Trophic State Index for Lakes. Limnology and Oceanography, Vol. 22, 361-369.

Coops, H. (2002). Ecology of charophytes: an introduction. Aquatic Botany, 72, 205-208.

Fuller, L. M., & Taricska, C. K. (2012). Water-quality characteristics of Michigan's inland lakes, 2001–10. U.S. Geological Survey, Scientific Investigations Report 2011-5233, 53 p.

Johnson, B. R., Wyttenbach, R. A., Wayne, R. & Hoy, R. R. (2002). Action Potentials in a Giant Algal Cell: A Comparative Approach to Mechanisms and Evolution of Excitability. The Journal of Undergraduate Neuroscience Education, Fall, 1 (1), 23-27.

Krause, W. (1985). Uber die Standortanspru che das Ausbreitungsverhalten der Stern-Armleuchteralge *Nitellopsis obtusa* (Desvaux) J, Groves. Carolinea, 42, 31-42.

Lewis, L. A. & McCourt, R. M. (2004). Green Algae and the Origin of Land Plants. *American Journal of Botany*, Vol. 91, No. 10, 1535-1556.

Soulie-Marsche, I., Benammi, M. & Gemayel, P. (2002). Biogeography of living and fossil Nitellopsis (Charophyta) in relationship to new finds from Morocco. Journal of Biogeography, 29. 1703-1711.

Thank you for your attention!

